velocity of the wave becomes sharper: dp/dE|max ~ (ufv —1)". We note that, for a weak wave, taking account
of the change in the density of the mobile dislocations gives corrections of the following order of smallness with
respect to o'f%vz—l).

The authors thank R. I, Nigmatulin and N. N, Kholin for their evaluation of the results and their valuable
advice.
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INSTABILITY OF A SPHERICAL BODY
UNDER UNIFORM LOADING

M. N, Kirsanov and A, N, Sporykhin UDC 539,374

Proceeding from the three-dimensional equations of stability theory in the dynamical formulation, the
stability of a sphere made out of a reinforced elastic —~viscous —plastic material is investigated under uniform
loading. The subcritical strains are small. Tt is shown that the results obtained from approximate and three~
dimensional theories for elastic—plastic stability problems differ qualitatively and quantitatively in practice.
A similar problem has been discussed earlier in [1] in a static formulation on the basis of an approximate ap~
proach and the relationships of the theory of small elastic —plastic strains.

The axisymmetric elastic—plastic state of a spherical body of radii r; and r, subject to the action of an
internal pressure q is determined by the relation_ships‘

0 4k, o r 1 1

o ==ty [" -2+ e’ (“ors - )}
po 4k r 1

B =gt [ L s e +25)]
e 1

O'ro = 4]f0y3 (1 -— ?3-) 0'80 = 4kOY3 (1 + 213)’

o= rlrg_'.

M

Voronezh. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 161~165,
January-February, 1979. Original article submitted March 13, 1978,
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Here and in the following all quantities having the dimensions of a stress are divided by the shear modulus p
and of length, by the outer radius ry; ¢, is the reinforcement coefficient, k, is the yield stress, and the sub-
scripts p and e are assigned to the components of the stresses in the plastic and elastic regions, respectively.

The radius of the elastic—plastic boundary vy satisfies the equation

3{4 ) . ¥ ['] 2

Y (1 a3(2+co))—6lna(2“i“o)—qu;_}‘z—f—co' @)

In order to determine the elastic-plastic state of a spherical body, the equilibrium equations, the plas-

ticity condition [2], the general equations of elasticity theory, and also the conjugate conditions of solutions in
the elastic and plastic regions, were included.

We write the basic relationships necessary for an investigation of the stability of a spherical body which
possesses elastic—viscous—plastic properties, The connection between the amplitude values of stresses,
strains, and dlSplacements in the plastic and elastic regions are represented in the form

2 1 0
dp (ekl -3 emmﬁhl) (she ~ ceff)

0% = Aexndy; + 2pey; — Ty e —— (15— celf), of; = hep 8y + 2ueyy, @)
respectively, where
€3 = 5 (wij + u30). @
The conditions on the elastic—plastic boundary v are of the form
;054 05aXal =0, [u, +ulsX,] =0, 5)

where Xk are the vector components which determine the shape of the elastic—plastic boundary; the square
brackets denote the difference between the corresponding components in the plastic and elastic regions.

The equilibrium equations and the boundary conditions [4] for the amplitude values of the displacements
are written in the form

(o:; + U?kui,h)vj + po’u; =0, (O'ii + ngui,k) nj = q_?ui,j- (6)
It is assumed that the load changes its direction as a result of small perturbations,

The system of equations in spherical coordinates for determination of the displacements in the plastic
region can, according to (6), (3), and (4), be written in the form

7 (4 — 3ag) uy, 1+ 3wy 9p +otg Ouyo - 2uy +ug (1 — a0 rt 4

sin?0
+ T2—+Ge (ua 22 + nze uy,33 + ctg Ouy 5 + 2uy + druy, 1)+P‘02u1 =0,
1
r? (1 + az )ul t2Hr%Us, 11+ 4ty 2 — 205 2Up 50 + e (Ua,85+Ug, 23—

.y
— 2etg Bug,3) + of (uz,14r2—2rus s +2up) +1° 7("; +of (u2,22+4ru,,2——2u2—

sm20 us + 51n26u2 33_2Ctgesm x:)

Uz 3 — Ctg 9u2 9) -+ p®2r2u2 = 0 (7)
r? (1 + -%") g3 + riug,an + 4rugs -+ g0 T Uase + otg 0 (u,2 + us,3) +
2 2 9p 0 (r2 2. — 2 Ll
+ garg Us.8 T 17 5 T Or (Pua,1g + 2ug — 2ruay) - o (U 0 - otg Buss +

+ 2r (ua,1 -+ u,3) +- gﬁ%u3,33 — 2u3) +p0%rus =0, a,=4(2-+co+sm)-t.
The incompressibility condition has the form

r2uy g+ ug 9 + 2ru, - ctg Bu, -+ - nﬂe =0. ®)

We determine the displacement in the elastic region from the system (7) and (8), where the value of a,
should be set equal to zero. Inthe case of an approximate approach [5, 6] it is necessary to set quantities in
(7) equal to zero which take the loading parameter into account, i.e., 0‘2.=0?;=0.
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The solution both in the plastic and in the elastic region is sought in the form of a Fourier series in the
spherical functions

Uy = 2 2 Ay (N Y5y (0, 9), u, = 2 Z B,, (7)769- Y., (9, 9),

n=v y={ n=v v=={

YV N a e (9

tg= 2 D Cns() 55 Yav 8 9), p= 2 X Doy () Y0y (6, 9).

n=y v=1 n=y v=={

The functions Yy, satisfy the equation
a 1 a2 \ —_
[-% +ctg979- - mw'{‘ n(n -+ Q]an(ea ¢) = 0.

We will omit the subscripts n and v from here on to simplify the writing,

One can convince oneself that B=C. Actually, differentiating the second equation of (7) with respect to ¢
and the third with respect to ¢ and subtracting the equations obtained, we get

L{us,y — ug ) =0, {10)
where L is some differential operator.
Since (10) is satisfied for any r, it follows from (9) that B=C, Substitution of the expansions (9) into Egs,
(7) and (8) and elimination of B and D gives a fourth-order ordinary differential equation of the form
™A
> RL() — =0, (1)
where
Ry = (N —2)(1 + 0§ — py*N-Y);
Ry = —r(4— 3a,+ 400 — rN-1 (802, + 4og — 63, (2 -+ N)));
R, = —r:N-1 (2N — —és-aoN — oy + 0N — o —
—12(1 + oY) — 4ro?, — 2rad .); (i2)
Ry = r’N-1(60} + rof,, + 203 + 8);
Ry=r'N-1(1+0); N=n*4n; p,=pac

A similar equation occurs in the elastic zone; it is only necessary to set in (12) ;=0 and 0%=0%?, o =
0 . r r ]
0§", which have the form of (1),

The boundary conditions (6) are reduced {o the form

3 s
A 924 . 34 -
,,;00‘?=0’ eSS AN ~2)=0 (13)
at r=1, a,

Here . ;

Qo =207, Q:=6-+3807—0f(2+N)— 3N+ 3 4.,

Q. =r(6+40] +203), Q,=r*(1+cY). (14)
For r=1 one should set in (14) a,=0, ¢}=0%", and 0§=0%", and at r=q, o =0P% and o%=08".
Conditions (5) in terms of spherical functions are as follows:

_ 24 o [224]_n  awe ey [334 24
[A] = O, [—73?] ——0, [WJ ——O, r:N 1(1+Gr0) [_57'?] +a079;. =, (15)



In the case of the approximate approach equations similar to (13) can be derived on the basis of the bound-
ary conditions [5, 6]

9 0
(47 + o%sue,;) ny = qius g

We will express the pressure q, from Eq. (2) everywhere so that q, enters the system (11)-(15) implicitly
through the critical radius y. A nontrivial solution of the system (11)~(15) corresponds to stability loss of the
sphere,

Let us replace by the method of finite differences the equations being investigated with a system of ho~
mogeneous linear algebraic equations whose determinant depends on the parameters of the medium ¢, kg, and
71¢s the complex number s=iw, the wave-formation parameter n, the dimensionless radius o, and the eritical
radius v,

Equating the determinant of the system to zero, we find the conditions of stability loss of the sphere, A
peculiarity of the numerical application consists of the fact that here y takes a finite number of values, running
through the entire interval from @ to 1, Consequently, one can find the minimum root v, of the determinant,
which corresponds to the critical pressure qq. The calculations were performed on an M222 computer, The
dependence of the critical pressure g, onthe geometry of the construction a is presented in Fig. 1 for ky=0.1,
cy=0.5,13=0.1, =1, and n=2 Mm=0 and n=1 are excluded from the analysis of the numerical application, since
they have no physical meaning).

~ The lower curve corresponds to the three-dimensional theory alternative, the dashed curve corresponds
to the approximate approach, and the upper curve corresponds to the pressure at which the entire sphere is in
the plastie state (exhaustion of carrying capacity). Comparison shows that the results obtained from exact and
approximate theory differ only quantitatively and insignificantly besides,
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